IONIC 6
QUICKSTART GUIDE

Learn the basics of lonic 6
using Angular & Capacitor

AJOJ 15BN

Contents

Getting Started with lonic

1.1 Introduction e
1.2 Installation&Setup. e e
1.3 CodeEditor o o e
Your First lonic App

2.1 ThelonicCLI e e e e
2.2 lonicProjectStructure L e e e e
2.3 Workingwith Angular e e
2.4 lonicComponents L e e e e e e e e e e
2.5 NavigationandRouting e
2.6 BasicRoutingConcepts e
2.7 Passing ParameterstoaDetailsPage
Styling lonic Apps

3.1 GlobalStyling e e e e
3.2 WebComponents. i i i i e e e e e e e e
3.3 Shadow DOM e e e
3.4 Adding Stylingtoloniccomponents L
3.5 MoreMaterial? e

Storing Data with lonic Storage
4.1 SettinguplonicStorage e e e
42 ReadandWritetoStorage e

Publishing lonic Apps for iOS, Android & Web with Capacitor

5.1 SettingupyourEnvironment L
5.2 Adding Capacitorplatforms
5.3 CreatinganativeiOSAPP i o i i e e e e e e
5.4 Creatinganative Android App e e
5.5 BuildlonicfortheWeb

13
14
15
18

21
21
23
24
25
27

28
28
30

Contents

5.6 Adding Capacitor Plugins

6 What’s next?

1 Getting Started with lonic

1.1 Introduction

lonic is an open source fUl toolkitramework that allows us to develop mobile and desktop apps using
web technologies - HTML, CSS and Javascript. It integrates wiht popular frameworks like Angular,
React and Vue, but we will focus only on Angular in this guide.

Build with the
tech you prefer

We don’t make assumptions about the tech

stacks you or your team prefers to build with.
That's why lonic is engineered to integrate
seamlessly with all best frontend frameworks,
including Angular, React, Vue, or even no
framework at all with vanilla JavaScript.

sTART wiTh: [Y s

Source:https.//ionicframework.com/

lonic is built to perform and run fast on all of the latest mobile devices, and your app is packaged for
native platforms using a tool like Capacitor which was created by lonic as well.

The lonic app is running inside a webview on mobile devices, but of course you don’t see a navigation
bar inside that app later! In fact, you usually can’t see a difference between a native app built with
Swift/Java or lonic, Especially not the end users, who don’t care about which technology you used to

build your app.

https://ionicframework.com/
https://capacitorjs.com/

CHAPTER 1. GETTING STARTED WITH IONIC 2

You might also see a lot of references to Cordova, but for all new lonic apps | recommend Capacitor
instead - think of it as Cordova 2.0. It’s not ceompletely like that, and you can learn more about the
actual differences here.

The focus of lonic itself is on the frontend UX and Ul, meaning controls, components or gestures to
create a platform specific look for both iOS and Android.

With lonic your app is built from one single code base, and the apps are often referred to as cross
platform apps or also hybrid apps (although the latter has a bitter taste for some people).

More accurate these days is actually the term web native apps as our apps are first class web apps and
powerful native apps at the same time.

We will get more into all the details about lonic and Capacitor in this guide - for now let’s set up our
environment so we can build apps!

1.2 Installation & Setup

Before you install lonic, you need to make sure you have Node.js installed correctly.

You can either just download it from there or use a version manager like nvm or n. | actually use n
because it’s super simple and does the job very well!

You can confirm that Node is installed correctly by running the following on your command line:

node
npm

You can see my output below, although your versions will likely be more up to date.

https://www.youtube.com/watch?v=di1fFrRO984
https://www.youtube.com/watch?v=di1fFrRO984
https://webnative.tech/
https://nodejs.org/en/
https://github.com/nvm-sh/nvm
https://github.com/tj/n

CHAPTER 1. GETTING STARTED WITH IONIC 3

[] [] - a1

node --version
vld . 18.2

npm --version
6.14.15

Be careful of using the latest versions, since | sometimes had problems with those in combination with
lonic, Capacitor or other build related tools.

Nonetheless, if you get an output you can continue and finally install the lonic CLI:

npm install @ionic/cli

This will install the package globally on your machine. If you don’t get any error, you should be able
to check the installed version by running:

jonic

Note: This is the lonic CLI version and you shouldn’t confuse this with the framework version!

Usually you don’t really need to care about the version of the CLI, only major new versions of the
framework will be interesting for you later down the road.

1.3 Code Editor

While we are here, let me recommend my editor of choice since years for all Angular related projects:
Visual Studio Code!

https://code.visualstudio.com/

CHAPTER 1. GETTING STARTED WITH IONIC

Ol-intromd M ®

~ IONIC6-EBOOK src 01-intro.md
build -

publish.md

[# Getting Started with lonic ## Code Editor

output.pdf Nonetheless, if you get an output you can continue and finally install the Ionic CLI:

img
*sh
npm install -g @ionic/cli

cover.pdf

SIc This will install the package %globallys on your machine.

0t-intro.md by running:

sh
donic -v

wiNotewk: This is the sxlonic G

£ title.txt
emplates Usually you don't really need to ca
ANHRES later down the road.
custom.css
vogel.latex
epub.css
epub2.css
kindle.css
X minted.sty
pandoc-minted.py ProBLES
ed-dark.sty
solarized-light.sty
ed.sty
$ compile_pdf.sh ./conpile_pdf-sh

README.md

npm —version
OUTLINE 6.14.15
TIMELINE

Figure 1.1: VSC

It’s exactly what we need to work with HTML,

an awesome code editor.

If you don't get any error, you should be able to check the installed version

ion#x and you shouldn't confuse this with the s#xfi onkk!

e about the version of the CLI, only major new versions of the framework will be interesting for you

ince years for all Angular related projects:

0

eplacing inage with description

Prettier

CSS and JavaScript and many extensions make this really

Of course you can use something else like Sublime, Atom or whatever you prefer, but I still recommend

you give VSC a try!

Once you got your environment finished, let’s create our first app.

2 Your First lonic App

2.1 Thelonic CLI

We are now ready to start the first project - already a bit excited?

The cool thing is that we can create, modify and build our project using the lonic command-line inter-
face (CLI). It’s all we need to develop lonic apps!

Now navigate to a folder where you want to start a new lonic app and run:

jonic start myApp blank =angular

This might take a bitdepending onyour connection, 1-2 minutes are completely normal as it will install
quite a few packages!

There are different elements in this command, so let me explain the structure:

jonic <command> <project-name> <template> <framework>

In our case we want to start a new app with the name myApp using the blank template and use
Angular as our JS frameworks!

There are actually three different templates available to begin with:

« tabs: A tabs based layout
« sidemenu: A sidemenu based layout
+ blank: An empty project with a single page

Especially for beginners | recommend the blank template to understand how everything works.

| still remember how motivated | started the tabs template with lonic vl and was completely lost
in the code trying to figure out how everything played together (not knowing about Angular.js
wasn’t a help at that point).

https://ionicframework.com/docs/cli
https://ionicframework.com/docs/cli

CHAPTER 2. YOUR FIRST IONIC APP 6

At this point your lonic apps is finished. Sounds funny?
Well I can prove!
Navigate into the folder of your app and then use the serve command to see a preview of your app:

cd ./myApp
ionic serve

This will compile the project and run it on a local server. You don’t have to take care of anything here,
just sit and wait..

After a quick build time, your browser should open and you should see a preview of your app running
on http://localhost:8100/.

®O0® @ ionicapp x|+ b

G © localhost:8100/home h * O o »g :

Blank

Ready to create an app?

Start with lonic Ul Components

Figure 2.1: lonic browser preview

That is a very good sign, because you have just created and started your first lonic app!

This is the preview function which you will use 95% of the time to develop your apps - and it’s unbe-
lievable fast.

If you are a former native developer, this will feel so much faster, and if you are coming from web
development you feel right at home!

You can also install another package for a cool preview that might help in the beginning, so run:

http://localhost:8100/

CHAPTER 2. YOUR FIRST IONIC APP 7

npm install @ionic/lab
ionic lab

Thiscommand runs a special lab view that shows how your app looks oniOS or Android side by side!

@ Ionic Lab

&« C % @ localhost g @ Incognito

Quick reference

Ready to create an app? Ready to create an app?
Start with lonic Ul Components Start with lonic Ul Compaonents

Twitter Documentation Forum GitHub

Figure 2.2: lonic lab

Fascinating, isn’t it?

At the top right corner you can pick which platform you would like to see the preview for - different
platforms will automatically have a different styling (but more on this later).

CHAPTER 2. YOUR FIRST IONIC APP 8

For now we leave that view and take a look at what we have actually downloaded and bootstrapped

before.

2.2 lonic Project Structure

The files inside of your folder might look quite scary and overwhelming if this is your first encounter
with lonic or an Angular project - but most of the time you will be working only in the src folder and

can forget about the rest!

Your app folder will look very likely look like the one in the image below.

So what s all of that?

eZe

src
.browserslistrc
.editorconfig
.eslintrc.json
.gitignore
angular.json

{} capacitor.config.json
ionic.config.json

X karma.conf.js

{} package-lock.json

{} package.json

{} tsconfig.app.json
tsconfig.json

{} tsconfig.spec.json

{} tslint.json

Figure 2.3: lonic project structure

In general we can ignore all files starting with a dot, since those are only relevant for your general
environment and we won’t inspect them closer in this guide.

Now let’s talk about the folders:

CHAPTER 2. YOUR FIRST IONIC APP 9

« e2e: These are end to end testing files, but if you don’t plan to use testcases (which you maybe
should at a later point) you can ignore the folder for now

+ node_modules: This folder is automatically generated once you install the npm dependencies
with npm install (lonic already did this for you in the beginning). This command will scan
the package.json for all the packages that need to be installed and is a classic Node.js file

+ src: This folder is the most important folder, and 99% of your work will happen in that folder.
It’s the folder that contains your actual Angular code

Next to the folders we got some files, so let’s talk about the most relevant as well:

+ angular.json: This file holds configuration values for our lonic/Angular project and you don’t
really need to touch or change it in the beginning

+ capacitor.config.json /ionic.config.json: More configuration for your project, especially when
you build the native apps later

+ package.json: Already mentioned before - all your package dependencies are specified in this
file

« ts*: Configuration files for Typescript, nothing we need to touch today

With the knowledge about all of these folders we can dive into what is actually our app and change a
few things!

2.3 Working with Angular

Until now we haven’t seen much of the code - so let’s change that!

As said before, we are working inside the src folder of your project, therefore we inspect what we
currently got.

The app folder is more or less the entry point of your app. Everything inside that folder is used when
your app is bootstrapped.

Thisfolder works in combination with the index.html, which also imports some stuff and has this part
somewhere inside the body of your HTML:

<body>
<app-root></app-root>
</body>

This is the place where your app will be loaded into!

You rarely have to touch that file, but it’s good to know how everything works.

CHAPTER 2. YOUR FIRST IONIC APP 10

Our App is made up of different components or also called pages, which are organized in modules
when using Angular. After starting our app we already have on page inside the folder called home.

If you generate a page in an lonic project, the page always comes with the same files:

+ routing.module.ts: Defining a route to this page - more about navigation later

+ module.ts: The module of that page where you add imports and declare the actual component
+ page.html: The template of your page

+ page.scss: The styling for this page

« page.spec.ts: Afile for testcases

+ page.ts: The “controller” of the page template

We can see that each page consists of different parts - and they are of course connected.

Within the SCSS file you can define styling for your view, the HTML page represents your view and the
Page TypeScript file contains the class that is associated with your view.

The connection between view and class comes from Angular and we don’t have to add anything to
get it working. Your home.page.ts will most likely look like this:

import { Component } from '@angular/core's

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrls: ['home.page.scss'],

i)

export class HomePage {

constructor() {}

For Javascript or web developers this looks very object oriented and for native developers it looks
also kinda familiar - and it is!

The @Component decoratoris used internally by Angular and we don’t have to change anything here,
the imports at the top import different components from other NPM packages and you’ll see some
more of them during the next chapters.

Inside our class we can define variables like in all other languages, so go ahead and change your class
to this:

CHAPTER 2. YOUR FIRST IONIC APP 11

import { Component } from '@angular/core';

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrls: ['home.page.scss'],

1)

export class HomePage {

myVariable = 'I open at the close's

Now how to show this value in our view?

We can access this variable through Angulars data binding by using double brackets { { and } } inside
our HTML view. Therefore open your home.page.html and change it to:

<ion-header>
<ion-toolbar>
<ion-title>
Ionic Blank
</ion-title>
</ion-toolbar>
</ion-header>

<ion-content class="1ion-padding'">
{{ myVariable }}

</ion-content>

We don’t mind all the other HTML tags right now and only focus on the one line inside of our ion-
content which loads the value of our class right into the view!

If you have the preview still open and save your file, you will see that a reload is triggered. That’s
because lonic uses live reload, and whenever you make changes those are immediately reflected
inside the preview!

Ok until now it’s pretty static to just see the string, so we add a button and call a function to change
the string to something else!

CHAPTER 2. YOUR FIRST IONIC APP 12

We start with our class where we implement a function that changes our variable. We can access all
the variables of a page by using th1s, so change your home.page.ts to look like this:

import { Component } from '@angular/core';

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrls: ['home.page.scss'],

i)
export class HomePage {
myVariable = 'The force 1is with me!'s

updateMyValue() {
this. = 'Now the force is even stronger!'s

I think how a function works should be quite clear to you.
But how to call it from the view?

We need to add a button using lonics components (which already have some basic styling!) and tell it
to call the function once someone clicks/taps that button.

Therefore, open the home.page.html again and change it to:

<ion-header>
<ion-toolbar>
<ion-title>
Ionic Blank
</ion-title>
</ion-toolbar>
</ion-header>

<ion-content class="1ion-padding'">
<ion-button expand="full" (click)="updateMyValue()">Click me!</ion-button>
{{ myVariable }}

</ion-content>

CHAPTER 2. YOUR FIRST IONIC APP 13

Besides creating an ion-button which should expand to the full size of the view, we also specify
what should happen on a click event - in this case the function of our class will be called.

You might notice now that when you click the button, the value of the view is directly updated. This
is again automatically working thanks to the data binding of Angular between view and class!

Enough of all of this for now - you can of course play around a bit more with the code, HTML and
Angular but we haven’t talked about all those strange tags in the HTML yet.

2.4 lonic Components

From that previous example you learned about some of the most basic lonic components. There is a
huge variety of lonic components available that you can use to build your app, and they are awesome
for some many reasons, let’s just pick 2:

1. They are standard web components - more on what that means in our styling chapter but the
good thing is, you can customise each of them to your needs and you don’t need to use the
standard Ul (although the out of the box styling of lonic components is pretty great)

2. The look different on iOS and Android automatically - we’ll see how this works later but you
can already see this by using the lab command or selecting a device preview in your browser
debugging tools

Understanding different lonic components and how to use them is part of the learning curve, and
something you will soon feel comfortable with!

To get a better feeling about your current code, let’s inspect the tags that we got:

« ion-header: The header is a parent component for the toolbar area of your app, and is one
of the 3 main elements next to the conent and footer element

« ion-toolbar: The toolbar can be positioned inside a header or footer and is fixed in its con-
tainer

+ ion-content: The main content area of your page that automatically scrolls whne it’s longer
than the view

« ion-button: Asimple button component with a bunch of possible customization options

In the beginning | recommend you take a rough look at all available lonic components. When you
work on your app later you will come back to this view and find the right elements to create your page,
and you will get better over time knowing when which component makes sense!

We could go on and use them one by one, but from going through 40 components you will maybe
remember 5, so let’s instead focus on another essential area that brings a lot of problems for new
lonic or Angular developers.

https://ionicframework.com/docs/components
https://ionicframework.com/docs/components

CHAPTER 2. YOUR FIRST IONIC APP 14

2.5 Navigation and Routing

lonic has no own routing concept and relies on the underlying JS framework - in our case, we are using
the Angular Router for navigation in our app.

Right now on our browser preview we see the HomePage - but how is it actually loaded?

To understand this we need to open our app/app-routing.module.ts in which we will find:

import { NgModule } from '@angular/core';
import { PreloadAllModules, RouterModule, Routes } from 'Gangular/router'j

const routes: Routes = [

{
path: 'home',
loadChildren: () => dmport('./home/home.module').then(m =>
< me)
+s
{
path: '',
redirectTo: 'home',
pathMatch: 'full'

}s
13

@NgModule ({
imports: [
RouterModule.forRoot(routes, { preloadingStrategy: PreloadAllModules })
1,

exports: [RouterModule]

1)
export class AppRoutingModule { }

This is the first place for routing information in our app and the place where we can add more infor-
mation about how our app works. Right now, we have two routes defined inside the array.

The second is actually a simple redirect that will change the empty path ” to the ‘home’ path, so it’s
like going to google.com/ and being redirected to google.com/home.

Inside the definition for the ‘home’ path we can now spot the LoadCh-ildren keyin which we supply
a path to the module file of our home page. This module file holds some information and imports
for the page, but you can think of it as the page that gets displayed.

CHAPTER 2. YOUR FIRST IONIC APP 15

Ok, cool, we now have a router and are loading a page through a path, so how is this connected with
actual HTML or the index page of the app?

If you happen to inspect your index.html the only thing you’ll find inside the body is:

<body>
<app-root></app-root>
</body>

The only thing we display is an app-root component, which is still not very clear. This app root is
replaced by the first real HTML of our app, which is always inside the app/app.component.html:

<ion-app>
<jon-router-outlet></ion-router-outlet>
</ion-app>

This is the key to understanding how the routing works: The Angular Router will replace router out-
lets with the resolved information for a path.

This means inside the body, at the top level, we have this special lonic router outlet (which is the
standard Angular outlet plus some animation extras) wrapped inside a tag for the lonic app itself.

Once we navigate to a certain path, the router will look for a match inside the routes we defined,
and display the page inside the right outlet.

We needed this short detour to get a solid understanding about why the things we’ve done work as
they do.

2.6 Basic Routing Concepts

So router outlets inside our app will be replaced by the Angular Router whenever we find a path
match. For all pages that you somehow want to access inside your app, you need to define a path.

The good thing (sometimes, not always) is that when you use the lonic CLI to generate new pages,
a new routing entry will be added automatically. You can run inside your project the command to
generate new pages like this:

jonic g page list
jonic g page details

CHAPTER 2. YOUR FIRST IONIC APP 16

Your routing inside the app-routing.module.ts now holds the information for the new paths:

const routes: Routes = [
{
path: 'home',
loadChildren: () => dmport('./home/home.module').then(m =>
< Me)
Ts
{
path: "',
redirectTo: 'home',
pathMatch: 'full'
1,
{
path: 'list',
loadChildrens () => dmport('./list/list.module').then(m =>
< me.)
1
{
path: 'details',
loadChildren: () => 1dimport('./details/details.module').then(m =>
(=3 me.)
1
13

This means, your app can now show content at these routes:

+ [home: The content of the home.page.html
+ [list: The content of the list.page.html
+ [details: The content of the details.page.html

You could in fact already reach those apps by using the URL directly in your address bar. But that’s not
how native apps work, right?

In order to access one of these pages you need to use the Angular router, and you can navigate to a
page both from the HTML code and also from the TS file.

Let’s start with our home.page.html and change it to:

<ion-header>
<ion-toolbar>
<jon-title> Ionic Blank </ion-title>
</ion-toolbar>

CHAPTER 2. YOUR FIRST IONIC APP 17

</ion-header>

<ion-content class="1ion-padding'">
<ion-button expand="full" routerLink="/list">0pen list!</ion-button>
<ion-button expand="full" (click)="openDetails()">0Open details from
< code!</ion-button>

</ion-content>

Now we can already move to the list page with the first button - give it a try!

Let’s quickly see how to do the same from code by implementing a new function inside the
home.page.ts:

import { Component } from '@angular/core';
import { Router } from '@angular/router's

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrls: ['home.page.scss'],

1)

export class HomePage {
constructor (private router: Router) {}

openDetails() {
this. .navigateByUrl('/details')s

We have now also injected the Angular router as a service inside the constructor of this class. Angular
handles the dependency injection for us, and everything we add to the constructor like this will be

available in our class!

If you inspect you browser behaviour closely you can now see: There is a transition animation be-
tween the pages!

We get this little detail because our app is wrapped inside the ion-router-outlet which auto-
matically adds those page transitions, either forward or backward. And of course they are different
for iOS and Android!

CHAPTER 2. YOUR FIRST IONIC APP 18

2.7 Passing Parameters to a Details Page

At this point you might wonder how you could get data to another page?
Let’s also do a quick example on that right here!

The most recommended and secure way for navigation is using route parameters. These are part of
the URL like:

To make this navigation work we need to tell the Angular router exactly
< which routes exist 1in our application, and include *xdynamic data as
~ wildcards** inside the routing information.

For example this let's change our routing info inside the
o **xapp-routing.module.tsx* to this:

“ts
{
path: 'list',
loadChildren: () => dmport('./list/list.module').then(m =>
~ m.ListPageModule)

b
{
path: 'list/:id',
loadChildren: () => dimport('./details/details.module').then(m =>
~ m.DetailsPageModule)

s

Now our second path to the details page has a parameter that we can fill!

We can simply change our function to have another path component in the URL now:

openDetails() {
this. .navigateByUrl('/list/1337")s

Next step is reading that data on the according page, which in our case is now the DetailsPage.

To achieve this, we inject the ActivatedRoute from which we can read the information like this
inside the details.page.ts:

CHAPTER 2. YOUR FIRST IONIC APP

19

import { Component, OnInit } from '@angular/core';
import { ActivatedRoute } from '@angular/router's

@Component ({
selector: 'app-details',
templateUrl: './details.page.html',
styleUrls: ['./details.page.scss'],

1)

export class DetailsPage implements OnInit {
myId = nulljg

constructor(private route: ActivatedRoute) {}

ngOnInit() {
this.myId = this.route.snapshot.paramMap.get('id');

How to confirm that it works?

Well let’s simply print out that value inside the details.page.html liek we learned before:

<ion-header>
<ion-toolbar>
<ion-buttons slot='"start">
<jon-back-button></ion-back-button>
</ion-buttons>
<jon-title>details</ion-title>
</ion-toolbar>
</ion-header>

<ion-content class="1ion-padding'">
<ion-card>
<ion-card-content>
{{ myId }}
</ion-card-content>
</ion-card>
</ion-content>

You are now able to move forward to a page and include information in the path!

CHAPTER 2. YOUR FIRST IONIC APP 20

@ @ (®) lonic App x + v
“— C {0t @ localhost:8100/list/1337 M o O R @ :

< details

1337

Figure 2.4: lonic navigation

For the fun lintegrated another component - the ion-card - becauseit’sa component used in many
places that you should be familiar with.

Do you spot anything else on this page? Yes? Good.

| also included the ion-back-button inside our header. This component automatically displays
a back arrow (or different icon or text) when we navigated to a page like this and got a page in our
history that we can jump back to.

There is nothing else you need to do - lonic automatically handles this for your.

Note: Even if we didn’t add a back button, we could have used a drag gesture from the side to go

back - just like in any other native app!

After going through this chapter you should have a basic understanding about lonic projects, some
Angular basics and which files to touch to add some logic and interaction to your app.

3 Styling lonic Apps

First of all, in general we can style and structure our app through all kinds of CSS.

You might have noticed that each new generated page comes with its own .scss file, so those files are
used to directly style one specific page.

Additional we got the theme folder right next to our app folder. This is a place to override lonic vari-
ables (more on this soon) and to import e.g. custom fonts or more individual styling files.

Finally we also got another styling file at app/global.scss where we can apply some global styling to
our app.

These 3 are the areas where we can add styling, and of course we need to work with our HTML to apply
CSS classes to different objects.

3.1 Global Styling

By default, lonic components come with custom styling for different platforms:

+ j0s:i0S styling, visible on iPhone and iPad

« md: Android styling following Material Design

« core: Any other platform will also use the md styling, meaning as a website your app looks like
the Android version

You will see the according styling when you run the app on a device running a specific OS, or you can
also test this with your browser debugging tools.

lonic automatically handles this by adding the according CSS class to the htm1 tag:

21

CHAPTER 3. STYLING IONIC APPS 22

e M < localhost 2 N M +

X E '-_'EI e} ﬁ Elements Console D Sources > Q {é}

@]html.plt-tablet.pIt—desktop.md.hydrated |3T*' IEI @ H 7 |j|

Blank

v <html lang="en" class="plt-tablet plt-desktop md hydrated" mode='"md">

» <head>..</head>
Vv <body>
» <app-root _nghost-cbc-c136 ng-version="12.1. ..</app-root>

<script src="runtime.js" defer></script>
<script src="polyfills.js" defer></script>
<script src="vendor.js" defer></script>
<script src="main.js" defer></script>
</body>
</html>

Ready to create an app?
Start with lonic Ul Components

Figure 3.1: lonic platform styling

Usually this platform specific styling is great, as it gives the users a native look and feel, but like all
things lonic, you could change this as well.

If you want one specific component to always look like the iOS version, you could directly set the mode
on the element:

<ion-button mode="70s">I will always be i0S</ion-button>

You can do this on every lonic component, as all of them come with two styling files.

If you (for whatever reason) like the Ul concept of one platform simply more, you could even set the

CHAPTER 3. STYLING IONIC APPS 23

mode for your whole application at the top level inside the forRoot () function of your module:

@NgModule ({
declarations: [AppComponent],
entryComponents: [],
imports: [BrowserModule, IonicModule.forRoot({
mode: 'dos'
}), AppRoutingModule],
providers: [{ provide: RouteReuseStrategy, useClass: IonicRouteStrategy

g }]9
bootstrap: [AppComponent],

1)
export class AppModule { }

Another way to target platform specific styling would be using the class name inside your CSS. Let’s
say you only want to change the appearance of the MD button, you could prefix your styling with the
md class:

.md ion-button {
font-weight: 6003

Now all this was just general information about lonic apps, but we need to understand one some mor
concepts in order to effectively style our apps.

3.2 Web Components

All lonic components are Web Components, built with lonics own Web Component compiler called
Stencil.

What exactly does this mean?

From the outside, what you usually see looks like this:

<ion-item>My content</ion-item>

The ion-1temisaWeb Component, and when you inspect these components with a debugging tool
inside your browser you see that there’s actually a lot going on under the hood!

https://www.webcomponents.org/introduction
https://stenciljs.com/

CHAPTER 3. STYLING IONIC APPS 24

v<ion-item _ngcontent-inn-c143 class="item ios item-fill-none hydrated"> == $0
v#shadow-root (open)
v<div class="item-native" part="native flex
> <slot name="start">.</slot
> <div class="item-inner">..</div> flex
div class="item-highlight"></div
s:after
/div
v<div class="item-bottom flex
> <slot name="error">..</slot
» <slot name="helper">..</slot
/div
" My Content "
/ion-item

Figure 3.2: Web Component content

AWeb Component is basically a container for some elements, with additional functionality. Everyone
can create a Web Component and define the elements within, plus any logic or styling tied to that
element.

We as the user can simply use a Web Component like the item without knowing what’s actually going
on inside of it - it’s like importing a module in your HTML. We only need to know the tag name, the
browser will handle the rest.

While this is a great concept, there’s another thing about lonic components we need to understand.

3.3 Shadow DOM

Shadow DOM is an API that is part of the Web Component model, and most lonic components make
use of it.

One of the main features of the Shadow DOM is isolation, which basically means the whole content
of the Web Component is not part of your actual DOM but lives isolated from the global scope in a
shadow tree instead.

Why?

Imagine lonic would supply a lot of styling with their components (which they do), and you use the
componentsinyour page. Now with bad luck you might have the same CSS rules and names like lonic
has used, which introduces a bunch of problems between your styling and the lonic styling.

Simple example: lonic defines a . button styling, but your company also hasa . button rule - using
the lonic component would have leaked their CSS rules into your own page causing a mess.

This was a common problem in the past as projects got bigger and different components just didn’t
play well together on one page.

With Shadow DOM, the styling of a Web Component is isolated from the rest of your page, which
means it won’t mess up your overall styling - but it also becomes harder to actually inject styling into
these components.

CHAPTER 3. STYLING IONIC APPS 25

3.4 Adding Styling to lonic components

Alright enough theory for now, let’s get back into our app and try to style some elements with this new
knowledge.

First, let’s try to use one of the predefined colors - you can find all of them inside the variables.scss
of your project!

Bring up your home.page.html again and change it to:

<ion-header>
<ion-toolbar color="primary">
<ion-title> Ionic Blank </ion-title>
</ion-toolbar>
</ion-header>

<ion-content class="ion-padding">
<ion-button color="secondary" expand="full" routerLink="/l1ist">0pen
< list!</ion-button>
<ion-button color="warning" expand="full" (click)="openDetails()">Open
<~ details from code!</ion-button>
</ion-content>

These colors are shipped with every lonic app, and they way to use them is by placing the color
property on an lonic component that allows this property.

If you quickly want to generate new values, you can also use the lonic color generator!

Now let’s put in a bit of standard CSS for our elements inside the home.page.scss:

ion-button {
margin: 30px;
height: 50px;
}

All of this works pretty flawless, so what’s the big deal with these web components Simon?

https://ionicframework.com/docs/theming/color-generator

CHAPTER 3. STYLING IONIC APPS 26

eoe M- < localhost el + »
lonic Blank

OPEN LIST!

OPEN DETAILS FROM GODE!

Figure 3.3: lonic variables and styling

Let’s try to change something else:

jon-button {
margin: 30px;
height: 50px;
background: red;
color: whites
border-radius: 8px;

Do you see any effect of these changes? No?
Good. Me neither.

This is the problem that most developers experience with lonic components, and | can understand
the confusion.

The CSS properties we try to set are set inside the Shadow componet and we can’t simply overwrite
them from the outside!

For every lonic component, you can find a list of CSS Custom Properties usually at the end of the
documentation of a component.

In the case of the ion-button we could now change the code and use CSS variables instead, which
will be respected and used inside the component:

https://ionicframework.com/docs/api/button#css-custom-properties

CHAPTER 3. STYLING IONIC APPS 27

jon-button {
margin: 30px;
height: 50px;
--background: red;
--color: white;
--border-radius: 8px;

At this point it’s still not working because we actually target those values directly on the component,
so let’s remove the values we added from the elements again:

<ion-button routerLink="/l1ist">0Open list!</ion-button>
<ion-button (click)="openDetails()">0Open details from code!</ion-button>

Ok | can see your head is spinning, and | totally agree that this stuff is challenging.

The only way to get better? Use the components, look at their properties and over time you’ll get
better at writing the correct CSS!

Inthe end, styling lonic apps comes down to writing CSS. So any course on CSS basics can be helpful.

3.5 More Material?

In fact this topic is so complicated that I’'ve written a whole book about it and how to style amazing
lonic apps like world class apps.

If you’re interested in learning more about styling, check out my book Built with lonic!

https://builtwithionic.com/

4 Storing Data with lonic Storage

Although this might me beyond a beginners quickstart guide, a very basic question developers have
is usually: Where to store the data of my app?

Of course you might have a real backend with API in the future, but usually you still need to store
information inside your app from time to time.

Lucky us, there are already great solutions out there which embrace either the localstorage of a
browser or even the native device memory.

4.1 Setting up lonic Storage

lonic Storage is our go-to package for easily managing data. With lonic Storage we can save JSON
objects and key/value pairs to different storage engines, unified through one interface.

Okin easy words this means, Storage will internally select which storage engine available is and select
the best possible solution for us.

If you run the preview, it will try: IndexedDB, WebSQL and finally localstorage.

The problem with localstorage in general is that this can get cleaned from the OS of a mobile device
and you lose all data. Not a very good idea.

To get started, simply install the following packages in your app:
npm install @ionic/storage-angular

npm install cordova-sqlite-storage
npm install localforage-cordovasqlitedriver

The first is the actual package, the rest is necessary to embrace the underlying SQLite database of a
mobile app when our app runs on a real device one day.

To use storage we now also need toimportitinto our module, therefore open the src/app/app.module.ts
and add it like this:

28

https://github.com/ionic-team/ionic-storage

CHAPTER 4. STORING DATAWITH IONIC STORAGE 29

import { NgModule } from '@angular/core';
import { BrowserModule } from '@angular/platform-browser's
import { RouteReuseStrategy } from '@angular/router's

import { IonicModule, IonicRouteStrategy } from '@ionic/angular';

import { AppComponent } from './app.component's

import { AppRoutingModule } from './app-routing.module's

import { IonicStorageModule } from '@ionic/storage-angular';

import { Drivers } from '@ionic/storage';

import * as CordovaSQLiteDriver from 'localforage-cordovasqlitedriver's
@NgModule ({

declarations: [AppComponent],

entryComponents: [],

imports: [
BrowserModule,
IonicModule.forRoot(),
AppRoutingModule,
IonicStorageModule. forRoot ({

driverOrder: [

CordovaSQLiteDriver. q
Drivers. o
Drivers. ’
1,
1)
1,

providers: [{ provide: RouteReuseStrategy, useClass: IonicRouteStrategy

- 1},
bootstrap: [AppComponent],

1)
export class AppModule {}

After the setup we can put Storage to use, but we need to make sure that we initialize it correctly before
doing any operation.

For this, let’s open the src/app/app.component.ts and change it to:
import { Component } from '@angular/core's

import { Storage } from '@ionic/storage-angular';
import * as CordovaSQLiteDriver from 'localforage-cordovasqlitedriver';

CHAPTER 4. STORING DATAWITH IONIC STORAGE 30

@Component ({
selector: 'app-root',
templateUrl: 'app.component.html',
styleUrls: ['app.component.scss'],
1)
export class AppComponent {
constructor (private storage: Storage) {
this.init();

}

async init() {
await this. .defineDriver (CordovaSQLiteDriver);
await this. .create();

Alright, now we can use lonic Storage to write and read some data!

4.2 Read and Write to Storage

We’ve learned how to use Angular data binding in the first part of this guide, so let’s combine that
knowledge with saving data to storage and loading it again later.

To begin with, we can inject the Storage service in our page and create two new functions to write
and read data.

Go ahead by changing the home.page.ts to this:

import { Component } from '@angular/core's
import { Router } from 'Eangular/router';
import { Storage } from '@ionic/storage-angular';

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrlss ['home.page.scss'],
1)

export class HomePage {

person = {

CHAPTER 4. STORING DATAWITH IONIC STORAGE 31

name: '',
age: ''

constructor (private router: Router, private storage: Storage) {}

openDetails() {

this. .navigateByUrl('/list/1337"');
}
savePerson() {
this. .set('my-person', this.)8
}
async loadPerson() {
const result = await this. .get('my-person')s
if (result) {
this. = results
+
}

To set data, we just need to use a specific key and then the data, and to read it again we just need to
key.

The calls to lonic Storage are asynchronous, which means they don’t immediately return a value.

If you are not familiar with this concept yet you can check out my video about async Javascript or find
a full course on this topic inside the lonic Academy!

Anyway, we need more buttons and inpuit fields for our actions, so let’s also change the
home.page.html to:

<ion-header>
<ion-toolbar color='"primary'">
<ion-title> Ionic Blank </ion-title>
</ion-toolbar>
</ion-header>

<ion-content class="ion-padding'">
<ion-item>
<ion-label position="floating">Name</ion-label>

https://youtu.be/1tCnWf6uddU
https://ionicacademy.com/

CHAPTER 4. STORING DATAWITH IONIC STORAGE 32

<ion-input type="text" [(ngModel)]="person.name"></ion-input>
</ion-item>

<ion-item>

<ion-label position="floating">Age</ion-label>

<ion-input type="number" [(ngModel)]="person.age"></ion-input>
</ion-item>

<ion-button expand="full" (click)="1loadPerson()">Load person</ion-button>
<ion-button expand="full" (click)="savePerson()">Save person</ion-button>

</ion-content>

Now you can enter some values, hit save and then refresh the page - by clicking load now you get back
the values from before!
But where is the data stored?

Insiden the browser preview you can see all stored data by toggling the developer tools, then going
to the Application tab and from there drilling down into your IndexedDB, which is the first choice of

lonic storage when running inside a browser.

CHAPTER 4. STORING DATA WITH IONIC STORAGE 33

| NeN () lonic App X+ Y
c O (G) localhost:8100/home] ﬁ) @ 0 »@ :
. x 4l Elements Console Recorder & Sources Application » B1 | £ : X E
lonic Blank —_— :
Application [&] Start from key e %
| B Manifest # Key Value |
Name 24X Service Workers 1} “my-person’ v {name: 'simon', age:
simon £ Storage age: 32
name: “simon®
Age Storage
32 » & Local Storage
» S5 Session Storage
LOAD PERSON + £ IndexedDB
v = _ionicstorage - http:/localhost:81(
SAVE PERSON S= _ionicky

22 local-forage-detect-blob-suppar
» £ firebase-installations-database - i
» = firebaselocalStorageDb - hitp:/flo:
» = mydb - hitpz/localhost:8100
» = newsdb - hitp:/localhost:8100
= Web SQL

» @ Cookies

£ Trust Tokens

Cache

= GCache Storage
= Back-forward Gache

Total entries: 1

Figure 4.1: lonic storage browser

We’ve now learned some of the most basic concepts for building lonic apps, but there’s one thing we
haven’t seen: Our lonic app on a real device as a native iOS or Android app!

And that’s what we will achieve next.

5 Publishing lonic Apps for i0S, Android & Web
with Capacitor

In previous courses or tutorials you might have seen Cordova instead of Capacitor, which both act as
the layer between your Javascript code and native iOS/Android code.

The lonic company came up with Capacitor to improve tooling and how we interact with this native
layer. The focus of Capacitor is to run everywhere - even inside a browser, which was mostly not
possible with Cordova before.

In a nutshell, Capacitor (as well as Cordova) helps to wrap your current web project into a native appli-
cation by displaying it inside a web view and creating the necessary native iOS and Android projects.
On top of that you can access the underlying native SDK to e.g. capture an image or use the gyrosen-
sor.

Capacitor generates a native project inside your folder once, and you simply check in the added
project to your source control just like your other code and treat it like any source asset - “Code once,
configure everywhere”!

At the same time, you can still integrate Cordova plugins (though not all) inside your Capacitor project
and use them when deployed to a device.

lonic now recommends Capacitor for all new projects, and therefore it’s the logical choice if you are
just starting out!

Once you have installed all required tools, we can continue to build our app.

Note: Most likely your final goal is to ship a mobile application to the Play Store and the App Store,
and in order to do so you nee to have accounts at:

+ Android: Register inside the Google Play Developer Console for one time fee of $25
+ Apple: Subscribe to the Apple Developer Program, pricing varies based on account type

5.1 Setting up your Environment

Since you will now touch native land, you might have to install a few things.

34

https://cordova.apache.org/
https://capacitorjs.com/
https://play.google.com/console/developers
https://developer.apple.com/

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 35

For iOS you don’t really need a lot - the only thing you should have installed is Xcode, the IDE that
native iOS developers use to build their apps with Swift or Objective-C. You can easily download Xcode
directly from the App Store on your Mac as well!

Note: If you want to build iOS apps you also need a Mac to build your app or use a cloud service like
AppFlow to build your binary in the cloud.

In order to build Android Apps you need the Java Development Kit (JDK) and the Android SDK. Most
likely Java is already installed on your machine, so the next thing would be to download Android Stu-
dio.

It’s like Xcode for iOS and it will help you to download the Android SDK and keep things up to date if
you need to install a later version at some point.

If you encounter any problems during the setup fo your antive tools you can also check out the official
guide for iOS or guide for Android.

5.2 Adding Capacitor platforms

To get started we need to add the native platform that we want to build for to our project, and we can
do this right with the lonic CLI.

Because Capacitor won’t magically update your native projects and just generate them once in the
beginning (unless you alter use the Capacitor configure package), we need to set our app id before
we add the platforms.

If you have created any mobile app in the past you know that each app needs a unique bundle id,
which usually looks something like com.devdactic.myapp, basically a reverse domain and your app
name.

We should set this up inside our capacitor.config.json right now:

{
"appId": "com.devdactic.mycoolapp",
"appName'": "myApp",
"webDir": "www'",
"bundledWebRuntime": false

}

Now we can add the according platforms by simply running:

https://developer.apple.com/xcode/
https://ionic.io/appflow
https://developer.android.com/studio/
https://developer.android.com/studio/
https://ionicframework.com/docs/developing/ios
https://ionicframework.com/docs/developing/android
https://www.youtube.com/watch?v=kYFZkmJ6rAc

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 36

jonic build
ionic cap add ios
jonic cap add android

Once you added the platforms you got a new folder at ios and android inside your project which
contains a native project that you can open.

Give it a try by executing a local Capacitor script inside your project with npx:

// Open Xcode
npx cap open 1ios

// Open Android Studio
npx cap open android

Right now the apps won’t work because we haven’t created a build of our app - you can see this by a
warning on your CLI when you added the platfrms:

[capacitor] [warn] sync could not run-missing www directory.

Capacitor basically takes the output (the www folder) and syncs it into the right place of your iOS or
Android project. And from now on, whenever we make changes and want to build a new native app,
we can simply create a new build and sync the changes.

Let’s do this right now:

jonic build
npx cap sync

Ok we are very close to seeing our lonic app on a device - just a few more steps!

5.3 Creating a native iOS App
You should have Xcode open right now, if not simply run again:

npx cap open 1ios

You are inside Xcode but might feel a bit lost, but don’t worry. There are only a handful of things you
need to do right now.

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 37

First, you need to be enrolled in the Apple Developer Program to build your app.
After that you need to add your Apple ID inside Xcode like described in the official lonic docs.

When you’ve done this, you should be able to select your development team inside the Signing &

Capabilities tab within Xcode:

evce M > P :?: App) [Simons iPhone Indexing | Processing files) © + B
= I QA ¢ §F D B & I3 4pp g M i OO0
& App < 4 > Identity and Type
~ @ App
> & App [] General Signing & Capabilities Rescurce Tags Info Build Settings Build Phases Build Rules Name App
> & Products PROJECT + Capabilit m Debug Release Location Relative to Group (2]
> & Pods App.xcodeproj -
> &m Frameworks 1 npp Signing Full Path [Users/simongrimm/
Documents/Projects/myApp]
> @ Pods {9 Automatically manage signing ios/App/Appxcodeproj ©
TARGETS \
Project Document
App 1
Team | Simon Grimm (<] Project Format Xcode 8.0-compatible a
Bundle Identifier io.ionic.starter Organization
Provisioning Profile Xcode Managed Profile @ Class Prefix
Signing Certificate Apple Development: Simon Grimm (ESASP2PTYX) Text Settings
Indent Using Spaces (<]
widths 41 a3
Tab Indent
8 Wrap lines

+ Filter @H =

Figure 5.1: Xcode select team

At this point, you only need to plug in your iOS device, select it within the top area and hit the play
button!

https://ionicframework.com/docs/developing/ios#setting-up-a-development-team

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR

38

15 App \ . i
ece M (] » | afied App)] Simons iPhone Building | 239/352 () + (WG]
= o QA @ §F D 88 I8 App g M ki OO0
App < > Identity and Type
v @ App =
> & App [[) General Signing & Capabilities Resfurce Tags Info Build Settings Build Phases Build Rules Name App
> & Products PROJECT tc Debug Release Locatlon Relative to Group (2]
> & Pods App.xcodeproj -
> & Frameworks & Aop Signing Fuil Path /Users/simongrimm/
Documents/Projects/myApp/
> @ Pods @ Automatically manage signing iosfApp/App.xcodeproj L]
TARGETS
B et posument
Team Simon Grimm a Project Format Xcode 8.0-compatible 2]
Bundle Identifier io.ionic.starter Organization
Provisioning Profile Xcode Managed Profile @ Class Prefix
Signing Certificate Apple Development: Simon Grimm (ESASP2PTYX) Text Settings
Indent Using Spaces (<]
widths a4z a3
Tab Indent
Wrap lines
- @
= OF = [

Figure 5.2: Xcode run app

This is a pretty big milestone: You just created your first native iOS app!
While you think this is pretty cool, let me shock you with one more thing...
You can actually have the same live-reload that you are used from your browser on a device!

After configuring everything inside Xcode you only need to run the following command:

jonic capacitor run ios

You now need to select your device, and after the build and deploy you will again see the app on your
device.

Note: If the app closes directly after start, simply open it again. It just happens sometimes.

Apply a change to your lonic code somewhere, hit save and see the app update in real time on your
device.

This is one of the most powerful commands, and any native developer would kill for that functional-
ity!

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 39

5.4 Creating a native Android App

For Android, we should open Android Studio for now as well:

npx cap open android

Here we actually don’t need any team configuration, and we just need to make sure that our device is
plugged in, then select it from the list at the top and hit the run button!

android - AndroidManifest.xml [android.app]
android . app src) main

Android =
£ v lRapp 1 <2 version encoding
~ [manifests < ‘est xmlns:
package

<application
:allowBackup

<activity
igChanges

<intent-filter>
<action :name:
<category iname
nt-filter>

K Gt B Terminal 4, Build

Figure 5.3: Android run app

And boom: You just created your first native Android app!

But of course, you can also directly run the app with the cool live-reload functionality we used on
i0S:

jonic capacitor run android -1 --external

In fact you can first run the command and open your app on an Android device and afterwards run it
again for i0S. By doing this, you can have live-reload on iOS and Android on two real devices at the

same time!

This is possible because the app is now loading the source assets from a local server, and both apps
basically pull their source from the same server that the lonic CLI starts.

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 40

5.5 Build lonic for the Web

You’ve seen the preview of your lonic app on the browser all the time, but let me quickly give you the
necessary information to really build and deploy a website from your project as well.

Because after all, lonic runs everywhere the web is!

To do this, we want to generate another build, optimised for production:

jonic build production

This flag will optimise your code, and you want to use it as well when you create the final build for
your native projects, as this can result in a reduced bundle size and faster app loading times.

After running the command you should see a www folder in your project (which we already had from
the build for Capacitor anyway) and this folder is what you can simply throw into your web hosting!

You can test this by installing the http-server package on your machine and then running this inside
your lonic folder:

http-server www

Go ahead and visit http://127.0.0.1:8080/ and you will see your lonic website.

If you want to host this app somewhere, | recommend you check out my tutorial on building and
deploying your lonic app as a PWA!

5.6 Adding Capacitor Plugins

Ok cool we got all those projects and even native apps, but we haven’t seen the real power of Capacitor
yet!

After all, we might want to use native functionality like accessing the camera in our app, and for this
we need to use plugins.

Now you got three options:
1. There are official Capacitor plugins

2. There are community plugins for Capacitor
3. You can use most of the existing Cordova plugins

https://github.com/http-party/http-server
http://127.0.0.1:8080/
https://ionicframework.com/blog/start-build-deploy-your-first-capacitor-pwa-with-ionic/
https://ionicframework.com/blog/start-build-deploy-your-first-capacitor-pwa-with-ionic/
https://capacitorjs.com/docs/apis
https://capacitorjs.com/docs/plugins/community
https://cordova.apache.org/plugins/

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 41

We won’t get into the last two points, but rest assured that the procedure is mostly the same.

For this guide, let’s add a new plugin by installing the Capacitor Camera package:

npm install @capacitor/camera
npx cap sync

Whenever we add or remove plugins we also need to sync them to the native platforms, and you will
have to restart any ongoing live-reload to get those changes.

Now let’s use the plugin by firstadding a new button and image inside our src/app/home/home.page.html:

<ion-content class="1ion-padding'">
<ion-button expand="full" (click)="captureImage()'">Capture
< 1image</ion-button>

</ion-content>

Now we can use the Camera plugin and simply call the getPhoto () function and assign the base64
string to a local variable inside the src/app/home/home.page.ts:

import { Component } from '@angular/core's
import { Camera, CameraResultType } from '@capacitor/camera's

@Component ({
selector: 'app-home',
templateUrl: 'home.page.html',
styleUrls: ['home.page.scss'],
1)
export class HomePage {
image = nullg

constructor() {}

async captureImage() {
const image = await Camera.getPhoto({
quality: 90,
allowEditing: true,
resultType: CameraResultType. ’
1)s

https://capacitorjs.com/docs/apis/camera

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 42

this. = 'data:image/jpeg;base64,' + image.

“e

Do you see any specific iOS or Android code? No?
Me neither - and that’s the magic of Capacitor!

Under the hood Capacitor will route our camera call to the according function in native Java or Swift
code, which then invokes the camera when the app runs on a device.

But Capacitor plugins sometimes even come with a web implementation fallback, so you have one
function that works across all platforms!

Now let’s see this in action, but if you tried to run your app at this point you will crash the app when

clicking the button.

And there’s even a hint in the logs why:

15 App 3 N .
eoe [(] > |5 e App) [} Simons iPhone Running App on Simens iPhone 2 + (WG]
B QA © 5 DB 8B [0 _pthread kill =M
A ? Thread 3) 0 thread_kill
v = App PID 4498 Y0} oo) D Thread 3) [0 _pthread_i <a>
@ cpPU 0% libsystem_kernel.dylib"__pthread_kill:
I 0x1b728995¢c <+@>: mov x16, #0x148
il Memory 20 MB 0x1b7a89968 <+4>: svc #0x80
4 —> Bx1b7a89964 <+8>: b.lo @x1b7a89984 ; <HLO> Thread 3: "main thread only"
Energy Impact Very High 0x1b7a89968 <+12>: pacibsp
L 11T 0x1b7a8996c <+16>: stp %29, x38, [sp, #-6x18]1!
& Disk Zero KBfs 0x1b738997@ <+28>: mov %29, sp
0x1b7a89974 <+24>: bl 0x1b7a85244 ; cerror_nocancel
@ Network Zero KBfs 0x1b7a89978 <+28>: mov sp, x29
; 0x1b7a8997¢c <+32>: ldp %29, x38, [spl, #ox1e
>
O Thread 1 Queue:..ad ES.E”a” 0x1b7289980 <+36>: retab
v (D Thread 3 Queue:...(serial) 0x1b7a89984 <+40@3: ret
)] 0 _pthread_kil

[13 _pthread_wathread
~ QOriginal Exception Backtrace
~ (D Thread
E3 0 __exceptionPrepr...

B 22 -[UIViewControll... [CAPCameraPlugin - You are missing N?PhntnLibraryAddUsageDescriptinn in your Info.plist file. Camera will no
[23 CapacitorBridge. function without it. Learn more:

ps://developer.apple
[£] 25 CAPBridgeProtac... .com/library/content/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys
1 26 CameraPlugin.ge... .html#//apple_ref/doc/uid/TP480089251-SW73
ERROR MESSAGE: 2622-81-25 10:25:82.581321+0100 App[4498:1329883] [Assert] Cannot be called with asCopy = NO on
[28 closure #1 in Cap... non-main thread.
= 36 start_wgthread {"errorMessage”:"You are missing NSPhotoLibraryAddUsageDescription in your Info.plist file. Camera will not
- function without it. Learn more:

[TR T S ISR~ App » (D Thread 3) [0 __pthread_kill Line: 4 col: 1 (=)

> () com.apple.uikit.eventfetch... https:\/\/developer.apple
> (b JavaScriptCore bmalloc sc... .com\/library\/content\/documentation\/General\/Reference\/InfoPlistKeyReference\/Articles\/CocoaKeys
> () Thread 10 .html#\/\/apple_ref\/doc\/uid\/TP408889251-5W73", "message” :"You are missing h ibraryAddl iption
e i T
S BEE| Aloutputs @ o oo

Figure 5.4: Permission error

For some native functionality we need to ask the user for consent, and to do this we sometimes need
to setup some keys ofr both iOs and Android.

Let’s do this for the camera by adding the following entriesinside the d1i ct of the ios/App/App/Info.plist:

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 43

<key>NSCameraUsageDescription</key>

<string>To capture 1images</string>
<key>NSPhotolLibraryAddUsageDescription</key>
<string>To add images to the library</string>
<key>NSPhotolLibraryUsageDescription</key>
<string>To select images from the library</string>

For Android, we need to open the android/app/src/main/AndroidManifest.xml and in the section
for permissions at the bottom change it to:

<!I-- Permissions —-->
<uses-permission

~ android:name="android.permission.READ_EXTERNAL_STORAGE" />
<uses-permission

» android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.INTERNET" />

Now you can run your app again and you should be able to capture an image on both Android and
oS!

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR

44

Figure 5.5: Image capturing

lonic TEST

CHAPTER 5. PUBLISHING IONIC APPS FOR IOS, ANDROID & WEB WITH CAPACITOR 45

Great success - that’s me while writing this chapter in my castle of loneliness.

And if you see yourself inside the app after capturing an image or selecting one from the library, you
achieved everything from this chapter!

6 What’s next?

First of all congratulations on finishing the lonic Quickstart guide - and thank you for spending your
time with me!

I hope you enjoyed the process of creating your first lonic app with Capacitor for iOS, Android and the
web and got a decent understanding for the basics, or at least a feeling about lonic.

It’s not for everyone, there are people who enjoy Flutter or React Native more, or maybe you even
want to focus solely on native iOS or Android.

Whatever you do, just keep one thing in mind:
Nobody cares about the technology you use.
Except your technical friends and developer bubble on social media.

Average Joe just wants a good app that solves a problem - and you can create exactly that app with a
framework like lonic or any of the other mentioned.

Now if you enjoyed this Quickstart guide, | would love to welcome you inside the lonic Academy soon
- it’s my place to help you with everything lonic and the fastest way to learn lonic!

With over 50 video courses, app templates and quick wins dedicated only to lonic it’s the best place
to make progress faster and join a community of helpful lonic developers.

To get a preview you can simply check out all the free videos on my YouTube channel - and the lonic
Academy courses go into even more detail.

Finally, you can always reach me on Twitter if you got any questions.
May you build something amazing with lonic.

Happy Coding, Simon

46

https://ionicacademy.com/
https://www.youtube.com/channel/UCZZPgUIorPao48a1tBYSDgg
https://twitter.com/schlimmson

	Getting Started with Ionic
	Introduction
	Installation & Setup
	Code Editor

	Your First Ionic App
	The Ionic CLI
	Ionic Project Structure
	Working with Angular
	Ionic Components
	Navigation and Routing
	Basic Routing Concepts
	Passing Parameters to a Details Page

	Styling Ionic Apps
	Global Styling
	Web Components
	Shadow DOM
	Adding Styling to Ionic components
	More Material?

	Storing Data with Ionic Storage
	Setting up Ionic Storage
	Read and Write to Storage

	Publishing Ionic Apps for iOS, Android & Web with Capacitor
	Setting up your Environment
	Adding Capacitor platforms
	Creating a native iOS App
	Creating a native Android App
	Build Ionic for the Web
	Adding Capacitor Plugins

	What’s next?

